高中一年级必学二数学要点总结人教版

点击数:381 | 发布时间:2024-11-09 | 来源:www.yomsj.com

    高中数学常识比较多,高中一年级数学必学二需要记忆的要点也不少。智学网为各位同学整理了《高中一年级必学二数学要点总结人教版》,期望对你的学习有所帮助!

    1.高中一年级必学二数学要点总结人教版 篇一


    函数的值域取决于概念域和对应法则,不论使用何种办法求函数值域都应先考虑其概念域,求函数值域常用办法如下:

    直接法:亦称察看法,对于结构较为简单的函数,可由函数的分析式应用不等式的性质,直接察看得出函数的值域.

    换元法:运用代数式或三角换元将所给的复杂函数转化成另一种简单函数再求值域,若函数分析式中含有根式,当根式里一次式时用代数换元,当根式里是二次式时,用三角换元.

    反函数法:借助函数f与其反函数f-1的概念域和值域间的关系,通过求反函数的概念域而得到原函数的值域,形如的函数值域可使用此法求得.

    配办法:对于二次函数或二次函数有关的函数的值域问题可考虑用配办法.

    不等式法求值域:借助基本不等式a+b≥[a,b∈]可以求某些函数的值域,不过应注意条件“一正二定三相等”有时需用到平方等方法.

    辨别式法:把y=f变形为关于x的一元二次方程,借助“△≥0”求值域.其题型特点是分析式中含有根式或分式.

    借助函数的单调性求值域:当能确定函数在其概念域上的单调性,可使用单调性法求出函数的值域.

    数形结合法求函数的值域:借助函数所表示的几何意义,借用于几何办法或图象,求出函数的值域,即以数形结合求函数的值域.

    2.高中一年级必学二数学要点总结人教版 篇二


    向量的计算

    1.加法

    交换律:a+b=b+a;

    结合律:+c=a+。

    2.减法

    假如a、b是互为相反的向量,那样a=-b,b=-a,a+b=0.0的反向量为0

    加减变换律:a+=a-b

    3.数目积

    概念:已知两个非零向量a,b。作OA=a,OB=b,则∠AOB称作向量a和向量b的夹角,记作θ并规定0≤θ≤π

    向量的数目积的运算律

    a·b=b·a

    ·b=λ

    ·c=a·c+b·c

    向量的数目积的性质

    a·a=|a|的平方。

    a⊥b〈=〉a·b=0。

    |a·b|≤|a|·|b|。

    3.高中一年级必学二数学要点总结人教版 篇三


    系统抽样

    1、系统抽样:

    把总体的单位进行排序,再计算出抽样距离,然后根据这一固定的抽样距离抽取样本。第一个样本使用简单随机抽样的方法抽取。

    K=N/n

    首要条件条件:总体中个体的排列对于研究的变量来讲,应是随机的,即没有某种与研究变量有关的规则分布。可以在调查允许的条件下,从不一样的样本开始抽样,对比几次样本的特征。假如有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

    2、系统抽样,即等距抽样是实质中最为常见的抽样办法之一。由于它对抽样框的需要较低,推行也比较简单。更为要紧的是,假如有某种与调查指标有关的辅助变量可供用,总体单元按辅助变量的大小顺序排队的话,用系统抽样可以大大提升估计精度。

    分层抽样

    1、分层抽样:

    先将总体中的所有单位根据某种特点或标志划分成若干种类或层次,然后再在每个种类或层次中使用简单随机抽样或系用抽样的方法抽取一个子样本,最后,将这类子样本合起来构成总体的样本。

    两种办法:

    1、先以分层变量将总体划分为若干层,再根据各层在总体中的比率从各层中抽取。

    2、先以分层变量将总体划分为若干层,再将各层中的元素按分层的顺序整齐排列,最后用系统抽样的办法抽取样本。

    2、分层抽样是把异质性较强的总体分成一个个同质性较强的子总体,再抽取不一样的子总体中的样本分别代表该子总体,所有些样本进而代表总体。

    分层标准:

    以调查所要剖析和研究的主要变量或有关的变量作为分层的规范。

    以保证各层内部同质性强、各层之间异质性强、突出总体内在结构的变量作为分层变量。

    以那些有明显分层区别的变量作为分层变量。

    3、分层的比率问题:

    按比率分层抽样:依据各类型型或层次中的单位数目占总体单位数目的比重来抽取子样本的办法。

    不按比率分层抽样:有些层次在总体中的比重太小,其样本量就会很少,此时使用该办法,主如果便于对不同层次的子总体进行专门研究或进行相互比较。假如要用样本资料判断总体时,则需要先对各层的数据资料进行加权处置,调整样本中各层的比率,使数据恢复到总体中各层实质的比率结构。

    4.高中一年级必学二数学要点总结人教版 篇四


    多面体

    1、棱柱

    棱柱的概念:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这类面围成的几何体叫做棱柱。

    棱柱的性质

    侧棱都相等,侧面是平行四边形

    两个底面与平行于底面的截面是全等的多边形

    过不相邻的两条侧棱的截面是平行四边形

    2、棱锥

    棱锥的概念:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这类面围成的几何体叫做棱锥

    棱锥的性质:

    侧棱交于一点。侧面都是三角形

    平行于底面的截面与底面是一样的多边形。且其面积比等于截得的棱锥的高与远棱锥高的比的平方

    3、正棱锥

    正棱锥的概念:假如一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,如此的棱锥叫做正棱锥。

    正棱锥的性质:

    各侧棱交于一点且相等,各侧面都是全等的等腰三角形。各等腰三角形底边上的高相等,它叫做正棱锥的斜高。

    多个特殊的直角三角形

    a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。

    b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。且顶点在底面的射影为底面三角形的垂心。

    5.高中一年级必学二数学要点总结人教版 篇五


    二面角和二面角的平面角

    ①二面角的概念:从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,这两个半平面叫做二面角的面.

    ②二面角的平面角:以二面角的棱上任意一点为顶点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫二面角的平面角.

    ③直二面角:平面角是直角的二面角叫直二面角.

    两相交平面假如所组成的二面角是直二面角,那样这两个平面垂直;反过来,假如两个平面垂直,那样所成的二面角为直二面角

    ④求二面角的办法

    概念法:在棱上选择有关点,过这个点分别在两个面内作垂直于棱的射线得到平面角

    垂面法:已知二面角内一点到两个面的垂线时,过两垂线作平面与两个面的交线所成的角为二面角的平面角

  • THE END

    声明:本站部分内容均来自互联网,如不慎侵害的您的权益,请告知,我们将尽快删除。

专业院校

返回顶部

Copyright©2018-2024 中国考试人事网(https://www.bzgdwl.com/)
All Rights Reserverd ICP备18037099号-1

  • 中国考试人事网微博

  • 中国考试人事网

首页

财经

建筑

医疗